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Abstract

The Poweshiek skipperling (Oarisma poweshiek) is a critically endangered

grassland butterfly with six populations remaining in the United States and

Canada. The single Canadian population, with the largest remaining contigu-

ous habitat, includes less than ~50 observed individuals and extirpation is

potentially imminent. Captive breeding is underway and there is a need to

locate suitable sites for reintroduction and habitat management. Species distri-

bution models (SDMs) predict habitat quality and guide management deci-

sions. Most SDMs rely on statistical validation as a surrogate metric for

accuracy, with presence-only SDMs usually reporting area under the curve

(AUC). Although experts have long cautioned against relying on statistical val-

idation alone, accuracy is rarely field-validated. We developed a presence-only

SDM using the maximum entropy (Maxent) method to predict probability of

occurrence for the Poweshiek skipperling and determine environmental

covariates associated with high probability of occurrence. We collected two

independent datasets to (a) calibrate our model to predict categories of habitat

quality (using factor analysis) and (b) compare expected and observed habitat

quality to calculate model accuracy. Statistical validation showed that we

predicted presence-absence of training data with high accuracy (AUC = 0.98).

Covariates responsible for most of the variation in probability of occurrence

included soil drainage, habitat patch size, and land use type. Only 0.4% of the

study area was expected to represent good-excellent habitat with the remaining

99.6% medium-poor. Our model predicted novel habitat quality with 81% accu-

racy (better than chance). Poor-medium habitat was predicted more accurately

(92%) than good-excellent habitat (54%). Our model showed better accuracy

than most other field-validated SDMs reviewed. We reiterate calls for greater

field-validation of SDMs: if we had relied on statistical validation alone, per-

ceived accuracy of our model would be inflated. Finally, managers can use our
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results to reliably exclude predicted poor-medium habitats as candidates for

Poweshiek skipperling habitat management or reintroduction.
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1 | INTRODUCTION

The Poweshiek skipperling (Oarisma poweshiek; Lepidop-
tera: Hesperiidae; Figure 1) is a small, obligate tall grass
prairie-dwelling butterfly listed as endangered in both
Canada and the United States (Government of Canada,
2002; Government of the United States of America, 1973)
and considered critically imperiled in Canada (Canadian
Endangered Species Conservation Council, 2015). Despite
being historically common, sharp population declines
have been observed since the 1990s (Swengel & Swengel,
2014). The Poweshiek skipperling is now found in less
than 1% of the sites it has been previously known to
occupy, with six known extant populations as of 2015, all
occurring on the margins of its historical range (Belitz
et al., 2018). Five populations are located in the United
States (86 individuals observed using standardized timed
surveys, Belitz et al., 2018; Pogue, Monfils, Cuthrell,
Heumann, & Monfils, 2016) and one population in
Canada (36 individuals observed using standardized
timed surveys; Delphey et al., 2016; Grantham,
Westwood, Becker, & Hamel, 2016).

Although Canada originally included ~1% of the
global historical range, when considering only the known
locations since 2013, the Canadian range of 40 km2 con-
stitutes the largest contiguously-occupied area for this
species (COSEWIC, 2014). In Canada, the Poweshiek
skipperling is reliant on dry to moist upland prairie sites
located between wooded areas, or adjacent to swamps or
marshy areas (Dearborn & Westwood, 2014; McAlpine,
1972). The habitat supply for Poweshiek skipperling in

Canada has remained stable due to the poor drainage
and high water table of the area, which have prevented
conversion to agriculture (Eilers, Lelyk, & Fraser, 2002).
This area is protected by tall grass prairie preserve
(TGPP), and has been surveyed for this species on an
annual basis since 2007.

The Canadian population faces ongoing threats from
fragmented habitat, natural, and anthropogenic distur-
bance, and the interaction of these threats with each
other and their life history. Poweshiek skipperlings have
over an 11-month immature stage and overwinter with-
out a protective structure (Dana, 1991; Dearborn &
Westwood, 2014; Dupont-Morozoff, 2013). Tall grass prai-
rie ecosystems are frequently subjected to natural and
anthropogenic fire, flooding, and grazing. The small area
of the TGPP is highly susceptible to catastrophic distur-
bance, putting the entire Canadian population at imme-
diate risk. The TGPP is managed via controlled grazing
and burning to maintain habitat quality over time. How-
ever, prescribed management activities like burning
could eliminate local populations if poorly planned
(Panzer & Schwartz, 2000; Stuhldreher & Fartmann,
2014; Swengel & Swengel, 2014).

Identifying critical habitat on a rapid timeline is
essential (COSEWIC, 2014; Partnership for Poweshiek
Skipperling Conservation, 2018) but may not be enough
to prevent extirpation (Saarinen, Reilly, Austin, & Packer,
2016). Preventing extirpation will require persistent addi-
tional populations to maintain genetic variability and
allow for recolonization after disturbance (Ries &
Debinski, 2001; Taylor, Fahrig, Henein, & Merriam,

FIGURE 1 (a) Female

Poweshiek skipperling at rest

(M. Hooshmandi) and (b) female

ovipositing (R. Westwood)
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1993). Efforts are underway to restock wild populations
from rearing programs at the Minnesota Zoo and Assini-
boine Park Zoo (APZ, 2017; Runsquist & Nordmeyer,
2017; Smith et al., 2016). Choosing sites for
reintroduction and management is particularly challeng-
ing given the high threat of disturbance and lack of
understanding of life history strategies. Measures of habi-
tat quality are needed to target areas to restock and
reintroduce populations to maximize recovery success.

1.1 | Practical applications of species
distribution models

Species distribution models (SDMs) are commonly-used
tools to predict the probability of occurrence, occupancy,
or abundance of a species across the landscape (Franklin,
2009). Their results frequently guide conservation action
for species at risk (e.g., Collier et al., 2012; Crawford &
Hoagland, 2010). An SDM has been reported for
Poweshiek skipperling inhabiting fen habitat in Michigan
(Pogue et al., 2016) which is ecologically different than
tall-grass prairie habitat in Canada. Furthermore, an
SDM was used to identify potential reintroduction for a
similar species in England (Maes et al., 2019).

Although the only way to truly validate the accuracy
of an SDM is with independent field-collected data
(Araújo, Pearson, Thuiller, & Erhard, 2005; Franklin,
2013; Yates et al., 2018), in reality, this is rarely done due
to the time and expense of collecting and processing such
data (Anderson et al., 2016; Araújo & Guisan, 2006). Most
SDMs are only validated statistically by withholding part
of the original dataset and applying it as “test” data in a
random or stratified fashion (Crawford & Hoagland,
2010; Marmion, Parviainen, Luoto, Heikkinen, &
Thuiller, 2009; Roberts et al., 2017). Most SDMs show
low model transferability (ability to make accurate pre-
dictions in other times or locations; Wenger & Olden,
2012). Despite thousands of published SDMs in the past
two decades, there are very few examples validated by an
independently collected dataset (but see Section 4).

We developed and field-validated an SDM for the
Poweshiek skipperling in Canada using the maximum
entropy (Maxent) approach (Phillips, Dudík, & Schapire,
2004). Given imminent extirpation risk, this model may
be one of few chances to guide recovery efforts for the
Canadian population. Our objectives were to: (a) better
understand landscape-level habitat associations of the
Poweshiek skipperling in Canada; (b) calibrate probabil-
ity of occurrence into habitat quality categories using an
independent field-collected dataset; (c) use the calibrated
model to generate a stratified random sampling scheme
to collect another independent dataset for field-

validation; and (d) compare expected and observed habi-
tat quality to calculate model accuracy. Our results can
be used to identify sites of high habitat quality to manage
or restock existing populations and introduce new
populations to support the recovery of Poweshiek
skipperling in Canada.

2 | METHODS

2.1 | Study area

All historical observations of the Poweshiek skipperling
in Canada are limited to the 358,000 ha Steinbach
ecodistrict in Manitoba (Figure 2). Dominant land use in
the ecodistrict is a mixture of farmland and unmanaged
deciduous forest (Smith et al., 1998). The boreal conti-
nental climate is characterized by short, warm summers
and cold winters, with mean temperatures of −17.1 and
19.8�C for January and July, respectively (Environment
and Climate Change Canada, 2015), and average annual
temperature of 3.4�C (Smith et al., 1998). The growing
season averages 184 days with mean annual precipitation
of 510 mm, 1/5th of which falls as snow (Smith et al.,
1998). Mean elevation is 237 m asl, with slopes less than
5%, and drainage is generally poor with soil composed of
lacustrine parent material (Smith et al., 1998). The TGPP,
where the Poweshiek population occurs, is formally con-
served and managed by the Nature Conservancy of
Canada, Nature Manitoba, and Manitoba Conservation.

2.2 | Modelling method and covariate
selection

Of the types of SDMs in common use, we selected maxi-
mum entropy (Maxent; Phillips et al., 2004). Maxent has
a superior ability to handle observations collected using
different protocols (presence-only data) and a relatively
small dataset (Aguirre-Gutiérrez et al., 2013; Elith et al.,
2006; Phillips et al., 2009). Although methods using
presence-absence or count data are generally more accu-
rate than presence-only data, for butterflies, presence
data collected over repeated years are highly correlated
with count data (Casner, Forister, Ram, & Shapiro, 2014).

Maxent relates presence data and environmental
covariates using a machine-learning algorithm to predict
probability of species occurrence across the landscape.
More important than type of SDM is the choice of envi-
ronmental covariates (Elith & Leathwick, 2009; Franklin,
2009). A rule of thumb is to choose no more than one
covariate per 10 presence locations to avoid model over-
fitting (Harrell, 2001; McGill, 2013).
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The distribution of any species, including the
Poweshiek skipperling, is controlled by its niche require-
ments (Hutchinson, 1957; Pulliam, 2000), which are
determined by proximate factors (directly linked to life
history needs, such as daytime temperature, precipita-
tion, cloud conditions, availability, and condition of host
plants, and so on) and ultimate factors (indirectly linked
to life history needs, such as average annual temperature
and precipitation, soil type, and so on). SDMs are often
completed with little theoretical linkage between
covariates and niche factors (Hirzel & Le Lay, 2008), so
we explicitly modelled niche requirements as best as pos-
sible. As the Poweshiek skipperling spends the vast
majority of its life cycle in only a few square meters
(much smaller than the resolution of most spatial data
products used in landscape-scale modelling), we postu-
lated proxies between the fundamental niche require-
ments of food, shelter, reproduction and factors which
can be captured at the landscape scale by available spatial
data products (Table 1). As butterflies are known to select
habitats based on both local and landscape factors, partic-
ularly habitat configuration (Davis, Debinski, &

Danielson, 2007; Soga et al., 2015), we captured factors
related not only to microsite but also landscape matrix.

Five spatial data layers (Table 2) were used to extract
seven covariates (Table 3). All analyses were completed
in ArcGIS 10.2.2 (Esri Inc., 2014). Covariate rasters were
scaled to 30 m × 30 m and clipped to the boundaries of
the Steinbach ecodistrict. We identified three distinct
covariate groups: landcover type and configuration (land
use, distance to deciduous stand, and patch size), microcli-
mate proxies such as energy input, substrate, and mois-
ture (solar insolation—seasonal, solar insolation—year,
soil type, and soil drainage), and a proxy for disturbance
(flood risk via distance to wetlands). Four additional can-
didate covariates were excluded due to data limitations:
vegetation height and flood risk (LiDAR imagery was
only available for a portion of the study area), and years
since graze and years since burn (data as available for the
TGPP but not for the rest of the ecoregion).

After calculating correlation ratios for all covariates
(1 = perfect correlation and 0 = no correlation;
Snedecor & Cochran, 1968) we discarded solar insola-
tion—seasonal due to high correlation with solar

FIGURE 2 Study area for

species distribution modelling of

Poweshiek skipperling in Canada,

which includes one of six extant

worldwide populations. The nearest

adjacent population is 1,200 km

southeast in Michigan, USA.

Ecoregions are differentiated by

shading, and individual ecodistricts

with gray borders. Left inset,

Steinbach Ecoregion. Tall Grass

Prairie Preserve boundaries provided

by the Nature Conservancy of

Canada (personal communication),

ecodistrict boundaries available from

Agriculture and Agri-Food Canada

(2013) and satellite imagery from

Esri Inc., (2014)
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insolation—yearly (ratio = 0.99). All other covariates
showed correlation ratios of ≤.1 and were retained.

2.3 | Maxent modelling

We combined presence observations collected by various
observers between 2002 and 2015 to produce a dataset of
272 unique Poweshiek skipperling presence locations.
Most of these observations were collected by the labora-
tory of R. Westwood using standardized timed surveys
(Grantham et al., 2016) with 10 observations from the

records of R. Webster (Webster, 2002). Each record
included (at minimum) the location and date of the col-
lection or observation, the name of the collector or the
observer, and in some cases information about the obser-
vation (nectaring, flying, and so on). Observations were
collected using standardized timed surveys, which count
of the number of individuals observed per 60 min of sur-
vey time. Survey days were generally sunny with a daily
high temperature range of 20–32�C, low winds, and little
precipitation (Grantham et al., 2016).

To limit autocorrelation, we applied spatial filtering
(Boria, Olson, Goodman, & Anderson, 2014) in Maxent

TABLE 2 Spatial data layers to extract covariates for Maxent modelling of the Poweshiek skipperling in Canada (all layers are available

from Government of Manitoba (2014) or NASA (2014))

Layer Description Data year
Resolution
(m) Rights

Digital elevation model
(DEM)

Shuttle radar topology Mission
(SRTM) 1 arc sec digital elevation
tiles

2000 30 m United States geological survey

Manitoba Forest resource
inventory (FRI)

Forest inventory based on 1:15,840
orthorectified aerial photography

1958-present Vector Manitoba land initiative

Land use classification
(LUC)

Land use classified from 30 m
LANDSAT thematic mapper
imagery

2005 30 m Manitoba sustainable development,
Manitoba remote sensing Centre

Soils Field-verified classification of type
and drainage of soils using the
soil agricultural interpretations
database, mapped at scales
ranging from 1:20,000 to
1:126,720

Unk. Vector Manitoba department of agriculture

Southern peatlands Classification of wetland coverage
in the Interlake and southern
boreal regions of Manitoba from
30 m LANDSAT 8 imagery,
minimum map unit = 1 ha

2013 Vector Manitoba habitat heritage
Corporation and ducks unlimited
Canada

TABLE 1 Relationship between fundamental niche requirements and factors at microhabitat and landscape-scales for the Poweshiek

Skipperling (information on flower and grass species from Dupont-Morozoff (2013) and Hooshmandi (2016))

Niche requirement
Proximate factor (microhabitat
scale) Ultimate factor (landscape scale)

Covariate
group

Cover/shelter Shrubs and tall grass species Size, shape, and border of tall grass
prairie ecosystem

Landcover

Adult food plant availability Nectar flower species (Rudbeckia
hirta, Solidago ptarmicoides, and
Prunella vulgaris)

Tall grass prairie ecosystem moisture
and temperature regime

Microclimate

Larval host plants and
reproduction in Canada

Grasses for egg-laying and larval
feeding (Andropogen gerardii,
Schizachyrium scoparium,
Muhlenbergia richardsonis and
Sporobolus heterolepis)

Years postgraze and postburn; flood
risk

Disturbance
regime
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to exclude observations within 30 m of each other, leav-
ing 180 filtered presence locations. We ran 10 cross-
validated model replicates with the maximum iterations
at default (500), where a random subset of the data was
chosen for each replicate and compared to the default
number of background points (10,000). For each repli-
cate, we used a jackknife approach to test model fit,
whereby 10% of the data (18 presence locations) was
retained and assessed against model prediction, expressed
as the area under the curve (AUC). AUC was averaged
for all 10 replicates. Each replicate produced a probability
of occurrence raster in .asc format, the arithmetic mean
of which was used to produce the final probability of
occurrence map.

2.4 | Model calibration

To translate predicted probability of occurrence to habi-
tat quality, the relationship between the two must be
quantified. Mathematical calibration can be done using

the lowest presence threshold (Pearson, 2010), such as
by Pogue et al. (2016), who calibrated their model
threshold values in areas of known Poweshiek
skipperling occupancy from their original dataset. As
our model was intended for use to identify potential
locations to reintroduce populations, we calibrated the
model to represent habitat quality rather than occupied
areas. Based on previous studies of larval host plants,
nectar plants, and moisture and landcover regimes asso-
ciated with abundance of Poweshiek skipperling
(Dupont-Morozoff, 2013; Hooshmandi, 2016), we devel-
oped a rating system for experts to classify sites into
four categories (1 = excellent, 2 = good, 3 = medium,
4 = poor; Appendix S1).

We collected an independent dataset of habitat qual-
ity by rating 24 sites (ranging from 3 to 20 ha) in the
TGPP with both extant butterfly populations of
skipperlings and observations pre-2010. Researchers were
given maps superimposing a grid of 30 m × 30 m cells
over a satellite image of each site and surveyed straight
transects through all traversable areas, visually assessing

TABLE 3 Covariates used in Maxent modelling of the Poweshiek skipperling

Covariate Extraction method Type
Source layer (see
Table 2 for description)

Distance to deciduous Euclidean distance to nearest polygon classified as
deciduous

Continuous FRI

Distance to wetlands Euclidean distance to nearest polygon classified as
any type of wetland

Continuous Southern peatlands

Land use Conversion of land use classification to raster Categorical LUC

Patch size Size (in ha) of patch representing an area of
contiguous land use

Continuous LUC

Soil drainage Conversion of stoniness group value to raster Categorical Soils

Soil type Conversion of dominant soil type to raster Categorical Soils

Solar insolation—seasonal Calculated on the study area + 1 km buffer using
Solar Analyst, following Fu and Rich (2000).
Sky size was set at 3,000 cells/hemisphere and
64 viewsheds. Zenith division = 1,440 and
azimuth division = 160. Diffuse model
type = uniform sky, diffuse proportion = 0.3,
transmissivity = 0.5. Interval outputs at 15 min
were averaged over the growing season, May–
October.

Continuous DEM

Solar insolation—yearly Calculated on the study area plus a 1 km buffer
using the Solar Analyst tool, following Fu and
Rich (2000). Sky size was set at 3000 cells/
hemisphere and 64 viewsheds. Zenith
division = 1,440 and azimuth division = 160.
Diffuse model type was uniform sky with
diffuse proportion = 0.3 and
transmissivity = 0.5. Interval outputs at 15 min
were averaged over the entire year.

Continuous DEM
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each cell and ranking it as habitat quality category 1–4.
We surveyed ~250 ha and assigned a habitat quality class
to 1,451 cells. After digitizing, we compared observed
habitat quality class to probability of Poweshiek
skipperling occurrence in each cell (Table 4). Factor anal-
ysis using a Chi-squared Automatic Interaction Detection
growing method and cross-validation (SPSS 21.0; IBM
Corporation, 2012) indicated that probability of occur-
rence could only be significantly split into three classes
or less. As only a small portion of the ecodistrict fell
within the value range for the “medium,” we divided
expected habitat class into two classes (good-excellent,
probability of occurrence ≥0.73; poor-medium, probabil-
ity of occurrence <0.73).

2.5 | Field-validation with an
independent dataset

To field-validate model accuracy on a landscape scale
within the Steinbach ecodistrict, we randomly selected
locations from the map of expected habitat class to be
rated. We stratified sampling by accessibility (within
100 m of road or trail) and by expected habitat class. Of
227 generated locations (195 predicted as poor-medium
and 32 as good-excellent), researchers visited 108 loca-
tions (86 predicted as poor-medium and 22 predicted as
good-excellent) in August–September 2017. Researchers
were blind to expected class and ranked each location in
the field as habitat quality Class 1–4.

Model prediction accuracy was classified using an
error matrix (Cihlar et al., 2003; Congalton & Mead,
1983) by comparing categorical spatial datasets with ref-
erence data collected on the ground (Hart, 2014; Naesset,
1995). Cohen's Kappa (Cohen, 1960) coefficient (k) was
used to measure how observed correspondence between
expected and observed habitat quality classes compared
to correspondence that would occur simply by chance
(Congalton & Mead, 1983).

3 | RESULTS

3.1 | SDMs and habitat associations

Across all 10 replicates, probability of occurrence models
showed high AUC for modelling both training (average
0.981, SD = 0.001) and test (average 0.978, SD = 0.006)
data. Covariates with highest mean percent contribution
to the training model included soil drainage (36%), patch
size (25%), and land use (20%). Remaining covariates con-
tributed less than 10% (Table 5). Despite not showing
highest percent contribution, jackknife results showed
patch size as contributing most strongly to both training
and test gain. To understand the relationship of probabil-
ity of occurrence and environmental factors, we examined
species-environment response curves for each covariate in
isolation from the total model (Figure 3). Predicted proba-
bility of occurrence was highest ~200 m from wetlands,
<100 m from deciduous treed stands, and in land use cate-
gories 4 (grassland/rangeland) and 16 (roads/trails).
Higher probability of occurrence also corresponded to a
patch size of ~1000m2, soil types 42, 80, and 99 (Inwood
Soil Series, Pelan Series, and Sprague Series, respectively),
soil drainage class 2 (moderately stony, 1–3%), and total
yearly solar insolation of ~257 kW/m2.

When predictions based on the final model were
mapped, only 0.4% of the Steinbach ecodistrict showed a
predicted probability of occurrence above ≥0.73 (expected
habitat quality class good-excellent; Figure 4). These
areas predominantly occurred within 35 km of the TGPP,
with the largest clusters of highly-ranked areas within
20 km of the TGPP.

3.2 | Field validation

When comparing predicted probability of occurrence to
four observed habitat quality classes at 108 locations
(Figure 5), sites observed as “excellent” showed mean

TABLE 4 Probability of occurrence of Poweshiek skipperling using Maxent modelling as compared to field-assigned habitat quality

classes in the Tall Grass Prairie Preserve, Manitoba

Field-assigned habitat
quality class

Mean probability of
occurrence (raw)

Probability of
occurrence
(factor analysis)

Expected habitat quality
class threshold

Expected habitat
quality classMean

Standard
deviation

Excellent 0.75 0.73 0.26 ≥0.73 Good-excellent

Good 0.72

Medium 0.63 0.66 0.31 <0.73 Poor-medium

Poor 0.54 0.54 0.33
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predicted probability of occurrence = 0.81 (SD = 0.25),
with 83% of “excellent” sites showing a predicted proba-
bility of occurrence >0.73. There was more variation in
sites observed as “good” (mean = 0.39, SD = 0.39) and
“medium” (mean = 0.27, SD = 0.31). All sites observed
as “poor” showed a probability of occurrence <0.73
(mean = 0.12, SD = 0.22). An error matrix was used to
compare habitat quality class at the two-class level
between expected (model-predicted) and observed (field-
assigned) classes (Appendix S2). Observed accuracy for
the two-class condition was 81% with Kappa = 0.48, indi-
cating agreement better than expected by chance. Accu-
racy was higher for sites observed as medium-poor (92%)
and lower for sites observed as good-excellent (52%).

4 | DISCUSSION

Our findings provide a tool to guide restocking and
reintroduction of this critically endangered species. Our
AUC value (0.98) was very high, and likely inflated due to
spatial autocorrelation (Vierod, Guinotte, & Davies, 2014)
due to the clustered nature of the presence points and low
environmental variation across the TGPP (all Poweshiek
skipperling presences occurred within a 14 km by 14 km
area). Inflation may also be a result of too many included
variables, and future iterations of this model should use a
statistical variable-reduction method appropriate for
Maxent (such as forward-stepwise variable selection, see
(Bale, Beazley, Westwood, & Bush, in press; Halvorsen
et al., 2016) to improve model parsimony.

4.1 | Habitat associations of the
Poweshiek skipperling

Due to short-lived adult stages and the cryptic nature of
immatures, it is difficult to gather the life-history

information needed to identify critical habitat for many
butterfly species. The habitat associations for the Cana-
dian population derived from our model can guide future
conservation efforts that are more reflective of known
species' biology and ecology.

Though not directly transferable due to different
covariates used and different aim, our results contrasted
Pogue et al. (2016)'s Michigan-based model in some
important ways. Pogue et al. (2016) found that probability
of prairie fens favourable to Poweshiek skipperling occur-
rence decreased with higher densities of roads and devel-
oped areas (though with low contribution importance,
8%). We did not include road density as a covariate but
found “roads/trails” was a cover type associated with
high probability of occurrence of Poweshiek skipperling.
This is likely because roadsides and trails in southern
Manitoba are generally bordered by grassland and/or
deciduous woodlands that are not subject to agriculture
or grazing and may provide some buffering capacity from
the effects of roads (Ries & Debinski, 2001). This also
may be a factor of spatial autocorrelation as the entire
Canadian population is found in an area of high road
density, and all presence observations occur within
1,500 m of the nearest road.

Pogue et al. (2016)'s model was predominantly
explained by area of prairie fen. In another study,
meadow area alone was not positively correlated with
butterfly abundance (Liivamägi, Kuusemets, Kaart,
Luig, & Diaz-Forero, 2014). It is known that landscapes
comprised of small, heterogenous patches support higher
diversity, abundance, and species richness of butterflies
in prairie-remnant communities (Davis et al., 2007; Slan-
carova, Benes, Kristynek, Kepka, & Konvicka, 2014;
Weibull, Bengtsson, & Nohlgren, 2000). Our study sup-
ports the importance of landscape configuration with
median patch sizes and proximity to deciduous forests. In
Manitoba, the Poweshiek skipperling is most often
located in connected small patches of open prairie near

TABLE 5 Average contribution of covariates to model prediction, permutation importance, training gain, and test gain across 10

cross-validated Maxent model runs predicting probability of occurrence of the Poweshiek skipperling

Environmental variable
Average percent
contribution

Average permutation
importance

Average training gain
contribution rank

Average test gain
contribution rank

Soil drainage 36.1 24.0 2 3

Patch size 24.7 13.4 1 1

Land use 20.2 17.9 4 4

Distance to wetlands 9.6 30.4 5 5

Soil type 6.8 10.3 3 2

Distance to deciduous 1.5 1.7 6 6

Yearly solar insolation 1.2 2.4 7 7
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FIGURE 3 Species-response curves indicating the relationship between predicted probability of occurrence of the Poweshiek

skipperling and covariates isolated from the total model. Error bars indicate standard deviation. *only soil types with p.occ >0.01 are shown,

all others are omitted
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small copses of trees and adults rarely enter areas with
heavy shrubs or woodlands (Dupont-Morozoff, 2013;
Hooshmandi, 2016; Semmler, 2010). It is unknown if
trees provide a functional barrier to the movement of this
species as documented for other butterflies (see Weibull
et al., 2000). Future field or spatial analyses could be
undertaken to help predict functional connectivity
between discrete locations.

As all three soil types associated with high probability
of occurrence are poorly drained and experience a water
table at or near the surface during the growing season
(Manitoba Agriculture Food and Rural Initiatives, 2010),
our model suggests that soil type and drainage is an

important driver of distribution. This corresponds with
Hooshmandi (2016), who found both composition and
pH of soil to be an important predictor of abundance of
Poweshiek skipperling. Although yearly solar insolation
was not a meaningful predictor variable, the future avail-
ability of LiDAR-based DEMs may allow for a more pre-
cise examination of energy availability at the microsite
level. As with many insects, the emergence period of
Poweshiek skipperling is strongly predicted by number of
growing degree days (Dearborn & Westwood, 2014),
suggesting the importance of modelling energy availabil-
ity and its relationship to structure or composition of
habitat type. Microclimate effects including soil moisture

FIGURE 4 Predicted

probability of occurrence of

Poweshiek skipperling using Maxent

species distribution modelling in the

Steinbach ecodistrict of Manitoba
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and solar insolation are important predictors of persis-
tence for other lepidoptera species (Suggitt et al., 2015),
and future modelling efforts for this species should con-
sider the range-wide climatic envelope.

4.2 | Limitations in model application

The Poweshiek skipperling faces other threats such as
pesticides (Godfray et al., 2015) and pathogen and
genetic impacts (Nice, Gompert, Forister, & Fordyce,
2009; Saarinen et al., 2016). Although our results can
support ongoing identification of critical habitat for this
species (Camaclang, Maron, Martin, & Possingham,
2015), further work is required to identify factors
related to population persistence such as minimum area
requirements (Baguette & Stevens, 2013) or mobility
(Burke, Fitzsimmons, & Kerr, 2011). Furthermore,
because of declines in number and additional pressures,
it is possible that the Poweshiek skipperling is not occu-
pying all available habitat (the problem of habitat satu-
ration, see Whittaker, Willis, & Field, 2001) or that the
habitat it does occupy is not ideal. Thus, predictions
based on current populations may not reflect ideal
reintroduction conditions. Indeed, with ~99% of the
original tall grass prairie in North America having been
lost since European settlement (Samson & Knopf,
1994), it may be impossible to understand ideal habitat

requirements for this species given high levels of
disturbance.

This species is likely vulnerable to climate change
due to phenological impacts (Westwood & Blair, 2010),
particularly adult emergence and potential impacts on
volitinism, as observed in similar species (Altermatt,
2010). The TGPP is expected to be strongly impacted by
climate change by 2080 (Gerla, 2016). However, given the
extremely low availability of native prairie, should the cli-
mate envelope move northward, there simply may not be
any available habitat for dispersal unless restoration
efforts begin immediately.

4.3 | Model accuracy and implications
for management

Field validation demonstrated that our model accurately
predicted medium-poor habitat in almost all cases (92%).
Thus, when using model results to identify locations for
management, users can reliably exclude all areas with a
predicted probability of occurrence ≤0.73 from search.
Though, the model did not predict good-excellent habitat
as accurately, the majority of field-identified excellent
habitat (>80%) corresponded with a predicted probability
of occurrence >0.73. We suggest that candidate manage-
ment or reintroduction areas (>0.73) should be searched
for sufficient densities of host plants before
reintroduction (Carleton & Schultz, 2013). Our Kappa
value was likely artificially low as Kappa is intended to
be used with categories of equal size, however, we had
many more samples in medium-poor than good-excellent
habitat.

Statistical validation of the model using AUC showed
high accuracy of predicting presence-absence of test data
(0.978), and most SDMs rely on statistical methods such
as AUC alone as a surrogate for model accuracy. Given
that field validation showed 81% accuracy, we echo rec-
ommendations of others to be cautious about interpreting
model accuracy from statistical methods alone, particu-
larly AUC (Drew, Wiersma, & Huettmann, 2011; El-
Gabbas & Dormann, 2017). Of the few SDMs in the liter-
ature that have been field-verified, most show low accu-
racy. Anderson et al. (2016) found a correlation of only
10% between presence/absence of their predicted species
and Maxent-predicted probability of occurrence and con-
cluded that their model failed. Fois, Cuena-Lombraña,
Fenu, and Bacchetta (2018) tested Maxent models against
independent datasets and concluded reliability was low.
Although West, Kumar, Brown, Stohlgren, and Bromberg
(2016) found that detection of their target species was
more frequent in higher predicted habitat suitability clas-
ses, they did not statistically quantify prediction accuracy.

FIGURE 5 Probability of occurrence for Poweshiek

Skipperling, predicted by a Maxent model for the Steinbach

ecodistrict of Manitoba, compared to field-observed classes of

habitat quality
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One study did find good agreement between predictions
from four older SDM methods and independently-
collected data (Spearman rank correlation .66–.94; John-
son & Gillingham, 2005), and Haughian, Clayden, and
Cameron (2019) were able to find their target species in
13 of 22 (60%) of sites where predicted Maxent probabil-
ity of occurrence was >0.50. We do note that other stud-
ies validated their models (which predicted probability of
occurrence) against novel presence observations of spe-
cies, whereas we predicted and validated habitat quality.
Field-validating our model using novel presence observa-
tions is not possible in our situation, since the location of
all individuals in the population was known and identical
to the locations used to train the model.

In our case, we collected two independent datasets for
model validation, which was partly facilitated by the
small size of the study area. A recent aggregation of all
known Poweshiek skipperling presence records from
1897 to 2018 (Belitz et al., 2018) may allow for the devel-
opment of more accurate models across the species' range
and offer new data to validate existing models. However,
as has been recommended for over a decade (Araújo
et al., 2005; Johnson & Gillingham, 2005), we reiterate a
call for producers of SDMs to validate their models with
an independent field-collected dataset, particularly where
those SDMs are used to make management decisions.
This caution is underscored in urgent cases like that of
the critically endangered Poweshiek skipperling, where
opportunities for model refinement may not be available
if recovery actions are not implemented immediately.
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